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In his classic work (1) on the theory of conformal transformations,
C.F, Gauss, showed that if in mapping one surface upon another, the
ratio m of two infinitesimally small distances on the two surfaces can
be expressed in the form

n ‘ds)2 1((du)?+(dv)2)
1ds LI(dU)?% + (dV)2

the necessary and sufficient condition that the transformation should be
orthomorphic or conformal is that

(1)

u+iv e f (U+iV) (2)

In the study of map projections, it is usual to regard the mean
sea level surface of the earth as a spheroid of revolution, in which
case an element of length dS on this surface is given by /

(d5)2=(Ncos¢)2 [(dq)2 + (dr)2] (3)

where N cos ¢ is the radius of a circle of parallel, q is the isometric
latitude and ) is the longitude. If the corresponding element of length
ds on the plane surface of the map is given by

(ds)? = (dx)? + (dy)? (4)
then the necessary and sufficient condition for a conformal transforma-
tion from the spheroidal surface to the plane is

p+iy =f(gq+i)) (5)
Sometimes, it is sufficiently accurate to regard the mean sea level

surface of the earth as a sphere of radius R, and then the same con-
dition for orthomorphism is obtained, provided that g is calculated as®

T . -
log tan TJ'_;:) —E](:x’ncﬁ-%n sin3 ¢ +%n2 sin 5¢ +..5) in the first
case and as log tan ;+—§ in the second case,

In each case, the rectangular coordinates of large numbers of
points have been determined and used both in the cadastral survey and

(1) Gauss C.F. Collected Wocks 4 : 195 (Gottingen; 1873). The solution was obtained in 1822 and
first published in ASTRONOMISCHE ABHANDLUNGE von H.€. Schumacker, Part 3 (Altona; 1825).

* ¢ is the geographical latitude and n = _E i.e. ‘the ratio of the differeace and sum of the
semi-aves a and b of the meridian ellipse.
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in the triangulation which forms the basis of maps of various kinds,
The question that now arises is, having once chosen a particular func-
tional relationship to give one kind of map projection and subsequently
chosen another functional relationship to give a second projection,
whether’ it is possible to transform rectangular coordinates directly
from the one projection to the other without having to determine geo~
graphical coordinates on the spheroid or sphere, To take a specific
example, suppose that the national survey of a country is computed
first on the Transverse Mercator Projection and subsequently on the
Lambert Conical ‘Orthomorphic Projection, then if the rectangular
coordinates of a certain number of points are known on both projections,
can the coordinates of any new point on either projection be transformed
directly to the corresponding coordinates on the other projection ?

If the functional relationships are of a fairly simple kind and are,
for example, x + iy = f(g+i)\) in the one case, and X +iY = g(qg+i})
in the other case, then it may be possible to eliminate ( q + i \) between
these two equations and obtain a direct transformation of the form
X +1Y = F(x + iy). But, in general, a transformation of this kind will be
very difficult to obtain, especially if the earth is considered to be a.
spheroid of revolution rather than a sphere. It has, however, been done
in at least ome case in which a direct transformation between two ad-
jacent strips of Gauss Conform Coordinates based on a spheroidal earth,
has been effected(?) Although the method does not depend directly on
the elimination of q + i*» between the two equations, this term is elimi-
nated indirectly by writing down the general equations of transformation
between the two systems and then finding the coefficients of the various
terms in the one set of equations in terms of the coefficients of the
corresponding terms in the other set. Sometimes, even if the equation
of transformation is found, it may be so difficult to evaluate numerically
that there may be little or no advantage over the usual calculation wor-
king through geographical coordinates,

In practice, cases have also arisen where little basic information
is available about either or both of the projections. Perhaps the exact
position of the origin, or the scale or the orientation is unknown or
doubtful, or the latitude of a standard parallel or the Iongitude of a
central meridian may be known to an insufficiently high degree of accu-
racy to make a direct transformation possible, even if it is theoretically
possible to do so. In such cases, it is necessary to rely almost com-
pletely on the coordinates of stations common to the two systems. But
then a further difficulty arises, in that observational errors complicate
the problem, and the position of best fit obtained either by least squares
or non-rigorous methods must be found. Generally, the solution of the
problem in such cases is by no means easy, as the following extract

from an article(® by a well known geodesist in the United States Army
Map Service will show :

(2) Laaf G.B.': A new method for the transformation: of Gauss Conform Coordinates from one
system to the next in-South African Survey Journal, {1947) 7 : 86.

(3) O'Keefe J.A. : Approximate methods for datum adjustments in Transactions of the American
Geophysgical Union(1947). Vol 28, N° 4, page 519.
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CONFORMAL TRANSFORMATIONS

" In his Copenhagen prize paper, "Gauss set forth a more refined
" method for adjusting one survey to another by means of a confor-
" mal transformation of x -y coordinates, Gauss proposed that a
" complex polynomial be used; the coefficients would be determined
" from the differences inx and y of the two surveys on a few se-
" Jected points. According to Thilo this method was tested by O,
" Schreiber using four points, in an attempt to reduce the triangu-
"Jation of Mecklenburg to the Prussian system. However, the
" attempt failed, and the remaining cassures were considerably
" worse than with a simple blanket correction. An attempt along
" similar lines was made by the New York office of the United
" States Lake Survey. Instead of using only four points, the Lake
" Survey used all first-order junction points, and derived the best
"values of a complex polynomial of the second degree by least
“ squares, The results, while better than Schreiber's, were not
" significantly better than those of Thilo, whose method amounted
"to the use of terms only up to the first degree. Extension to the
"third degree was carried out, but without significant improvement.
" The fajlure of the method, which was repeatedly attempted, could
"to some extent be traced. It is well known that if the line inte-
gral of a complex function is taken around the boundary of some
" region, the integral around the boundary must vanish, or the
" function will cease to be analytic somewhere in the interior. In
" the case of the Lake Survey problems, it was found that the inte-
" gral, which could be roughly evaluated by the trapezoidal formula,
" did not vanish, and that the excess, no matter how distributed,
would always lead to cassures of approximately the same amount
as those obtained with the first degree polynomial alone. Of cour-
' se, by using a polynomial with as many terms as there are boun-
" dary points, agreement could be secured on these points; else-
" where, however, the polynomial would oscillate so badly that it
“would be worthless, The development of some mathematical
techmque sacrificing conformality to some extent for the sake of
" close agreement on the common points is urgently needed",

In gpite of the apparently hopeless task involved, it has been found
possible to effect a transformation of the kind mentioned in at least one
tase in South Africa. Using a complex polynomial of the fourth degree
based on nine common stations, the coordinates of points on a local
system (called "the Goldfields System') were transformed conformally
to the Gauss Conform System (substantially the same as the Transverse
Mercator System) using the method of least squares{? Over an area
of about 250 squares miles’ the average error on the nine common
points was found to be 0.20°° English foot, which is not significantly
greater than the error in either of the original surveys, one of which
was established as long ago as 1890. Recently, when another eight of
the old Goldfields stations were re-determined on the Gauss Conform

(#) Laof -G.B. : The coulormal - transformation- of Goldfields Coordinates into Gausa Conform
Coordinates in‘Sonth African Survey-Journal. Vola 7 (1949) and 8 (1950). -

* D'square mile = 2.59 square kilometres (approx.).

** 1'English foot = 0.3043 metre (approx.).
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System, it was found that the average difference between the valyes
obtained from the field survey and those obtained by the conformal
transformation method amounted to no more than 0,18 English foot,
which confirms not only the accuracy of both the original surveys but
also the method of transformation,

In this article a further method of transformation based on the
application of the theory of divided difference interpolation to a table
of complex numbers, will be described. To demonstrate the method,
the geographical coordinates of a certain number of arbitrarily chosen
points assumed to lie on a particular spheroid of reference are trans-
formed conformally first on to one projection and then on to another,
The two sets of coordinates are then used to form a table of complex
numbers, and divided differences are calculated, By transforming the
geographical coordinates of any new point on to the first system and
then interpolating into the table of complex numbers, using the rectan-
gular coordinates of this point as argument, the corresponding rectan-
gular coordinates on the second system are obtained. The result is then
compared with the coordinates obtained by direct transformation of the
geographical coordinates to the second system. In each case, a complete
check on the arithmetical work involved is obtained simply by repeating
the interpolation process from the other end of the table, Once the table
of complex numbers and divided differences have been drawn up, the
coordinates of any number of points can be transformed directly from
the one system to the other and fully checked in a few minutes. The
transformation is rigorously conformal throughout.

The only difficulty in practice lies in evaluating the remainder
term and this is particularly important because the accuracy of the
method of interpolation depends upon it. In a Note appended to this ar-
ticle, a colleague has determined an upper-bound to the modulus of the
remainder term in a transformation of a relatively simple kind based
on a spherical earth and has shown that it is negligible in all practical
cases. In other cases it may prove to be either too difficult or impossi-
ble to calculate the value of such a term. But if it can either be shown
or justifiably assumed that in a particular transformation it is negligi-
ble, then the conversion can be effected with comparative ease, even
in those cases where certain basic information about either or both
projections is lacking, For instance, the method does not depend upon
a knowledge of the latitudes of the standard parallels, the longitude of
the central meridian, the scale factor nor upon the orientation of the
two systems. It does not even require a knowledge of the unit of mea-
surement used nor even of the type of projection employed. But it must
be emphasised that in the strictest sense, if no information of any kind
about the two projections is available, no unique solution of the problem
is possible. Any arbitrarily chosen set of coordinates for the result
(within limits) could be shown to be consistent with some projection,
even if it were purely fanciful.

Suppose that the coordinates (x,y)of n points on one projection
and (X, Y) of the same points on another projection are given, then the
complex numbers representing these two sets of coordinates together

194



CONFORMAL TRANSFORMATIONS

with the corresponding divided differences can be set out in the form
of a table as shown in Table I,

TABLE I
e

Table of Complex Numbers and Divided Differences

z=x+iy Fz) = Z = X+iY Divided Differences
z F(z) = Z, [ls.zt orzde; 20d order
zy F(z,) = Z, [2’22] AZyZ223)
23 F(z;) = Z,4 L S
Zne1 F (zn~1) =Zgey | T
7. Flz) = Z, { Zhey Zo]

The divided differences of first order are defined as follows :

VAR A
(Zy2Z,] - 21222

Zp~1~Zn
In a similar way, second and higher order differences may be

obtained :
[Z)Z3)1-17Z52Z4)

Zy)=12,

[ZyZ22Z3] =

z vee Zor 1=[ Z e
[lezzs---Zn]=[ 1222 2oy V=122 25 022 7y } (6)

Z) =2y

Assuming for the moment that the value of Z corresponding toz
is known, and corresponding divided differences are formed,

Z-Z
[ZZI] = !
z-z,
(Z2Z,1-1Zy2Zy]
Z-2Z,
{ZZ1Z22:00Zyy1-121Z5+++24]
Z~2Zy
then by repeated substitution, the following equations are obtained :
Z=2Z;+(z~2,)[221]
ZwZy+(z-2))[Z1Z9] + (2=2,)(2-2,)[Z2 21 Z;]
2= Zy+(2=2y)[Z1Z2]) +(2~2,) (2=2,) [ Z} Z3 23] ++ss
+(z-21)(z-23) o+ (2-20y) [ Z1 Z3 - ++ Z3 ) + Ry (Z)
where Ra(Z) = (2-2,)(2-2,) -+ (2~20) [ZZ1 Zp 40 Zy ] (7)

(ZZ1Zy] =

[ZZy2Zge0 Zal =
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This is Newton's divided difference interpolation formula applied to
complex numbers.

Four numerical examples have been chosen to illustrate the
method,

Example 1. In this example, the earth is assumed to be a sphere of
radius R = 6 371 227.711 metres, this value being the radius of a
sphere, whose surface area is equal to that of the. surface of the Inter-
national spheroid, Points on this surface are transformed to the plane
using first Mercator's projection and secondly the Stereographic pro-
jection (equatorial case). In Mercator's projection, the law of transfor-

n
mation is x + iy = R(q +i}A) where q = log tan (-4—+-<2£}

so that x = R log tan and y = RA (8)

177

For the Stereographic projection, the basic equation is
1 .
X+ iY = 2R tanb 3 (q+iA)*. To express X and Y in terms of geogra-

T
phical coordinates, we note from (8) that el = tan (I+ %)

n
and so e 9 = cot ‘Z—Jri

1
Hence cosh q = E(e‘l + e 9) = sec ¢ and similarly

1
sinh q = —2—(e"l - e 1) = tan ¢

sinh —i—(q + iA) sinb -i—(q—i)\)

Then (X +iY) cosb-;-(q+i)\) cosb%(q—i)\)

2R

sinb q sink i\
cosh q cosh i)

lan¢+isin)\

ft

sec ¢ + cos A

sin¢+icos¢sin)\

= 2R

1 + cos ¢ cos A

2R sin ¢ 2R cos ¢ sin A
- ——— d £ ——— e 9
and hence X 1 + cos ¢ cos A an 1 + cos ¢ cos A (9
Q Four points A, B,C and D are now
chosen, such that when transformed
A to Mercator's projection, they lie at
p approximately equal distances along

the circumference of a circle of

about 50 miles ¢*) radius . In addi-
tion, three other points Q,P and 0

D B are chosen, such that 0 lies near
the centre of the circle and P and Q
approximately along the bisector of
the angle AOB , P at a distance of
about 50 miles and Q about 100 miles
from Q.

* Dans la notation de l'antenr les expressions sink X, cosh x, tanh X représentent les
fonctions hyperboliques cbh x, sh x, th x.
#* 1'mile = 1.609 kilométres (approx.}.



CONFORMAL TRANSFORMATIONS

The adopted values of the geographical coordinates of these points are
given in Table II.

TABLE 11
Point Latitude Longitude

A 30°, 37'. 40" South 25° 0'. 0" East
B 30 0 0 25 43 30
c 20 22 20 25 0 0
D 30 0 o 24 16 30
0 30 0 o0 25 0 0
P 30 27 20 25 31 30
0 30 53 40 26 1 30

These coordinates are then transformed to the two different pro-
jections using equations (8) and (9). From the two sets of coordinates
ofA,B, C.and D, the table of complex numbers and divided differen-
ces is set up. In turn, the coordinates of O, P and Q are transformed
from Mercator's projection to the Stereographic projection, using New-
ton's divided difference interpolation formula up to and including third
order differences," that is Ry (Z) is neglected. To check the calculation,
the interpolation is also carried out from the bottom of the table upwards

using the formula

Z~Zy+(2-2)[Z3Z,]+(2-2,)(2-25)[Z3Z32,]
+ (z~2,) (z2~23) (2-2,) [ Zy Z3 Z3 Z4) + Rg(Z)

where R4 (Z) is one again neglected. The two sets of transformed coordi-
nates should in each case be identical apart from rounding off errors
in the calculation. In the example, the values all agree to within
t 0,001 metre, The accuracy of the method may then be judged by a
comparison of the results obtained by divided difference interpolation
and those obtained by using the basic formulae of the projection, the
differences of the two sets of results being the wvalue of R4 (Z) at the
three points, In this example, the actual values of | Ry (Z) jare 4 mms
at0, 12 mms at P and 79 mms at Q. In the Note appended to this
article it is shown that the value of | R4 (Z)]| cannot exceed 25 mms at N,
52 mms at P and 437 mms at Q. It must, however, be emphasised
that the latter values represent the upper bounds of | R4 (Z) |, which does
not mean that | R4 (Z) | will necessarily reach values of this magnitude at
any point within the area considered. Finally, it should be remembered
that in practice, points will generally be chosen within the circle passing
through- or near the pivotal points A, B, C and D and so it would be
unlikely that the transformation of the coordinates of a point, such as
@, 50 miles beyond the oircumference of this circle, should be neces-
sary,

(10)

Example 11, In this example the same two projections based on a sphe-
rical earth of the same radius are used., But instead of four points
approximately equally spaced around the circumference of a circle of
50 miles radius, five points are chosen and the radius of the circle is
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increased to about 150 miles. This means that the points are far enough
apart to control an area as big as Basutoland and the Orange Free State
combined. For purposes of reference, the pgeographical coordinates of
the five pivotal points A, B, C, D and E and the two check points Q
(near the centre of the circle) and P (near the circumference of the
circle between D and E ) are given in Table III.

TABLE III
Point Latitude Longitude
A 30°, 2'., 0" South 27°, 20', 30" East
B 29 9 20 28 43 10
C 27 44 0 28 11 30
D 27 44 0 26 29 30
E 29 9 20 25 57 50
0 28 45 40 27 20 30
P 28 22 0 25 57 50

As a result of the transformation, the two sets of coordinates of
0 and P obtained by interpolation from the top and bottom of the table
agree to within * 1 millimetre and these values in turn agree with the .
values calculated from the basic formulae of the projection to + 0 mms
for point O and to - 1 mm for point P,

Example II1. In this case, four trigonometrical stations about 7 miles
apart were chosen. The first projection is the Gauss Conform Projec-
tion with central meridian in longitude 29°% the system is 2° wide and
the coordinates are in Cape Roods (+) . The second projection is the
Universal Transverse Mercator System, Zone 35, with 6° belts and the
coordinates are in metres, Both projections are based on the Clarke
1880 spheroid of reference. As a result of the transformation the two
sets of coordinates agree to within + 1 mm.

Example IV, For this example, four pivotal points A, B, C, and D
were chosen, roughly at the cormers of a rectangle, and sufficiently
far apart to command an area as large as the whole of Switzerland.
In the first case, the geographical coordinates of the four pivotal points
were transformed to the Lambert Conical Orthomorphic Projection with
central meridian in longitude 8° 15' E and with a standard parallel in
1atiti_xde 45° 54' N and scale factor along this parallel of 0,998 992 911,
In the second case, the geographical coordinates were transformed to
the Transverse Mercator Projection, with ceniral meridian in longitude
7° 15' East and a scale factor of unity along the meridian, Both pro-
jections are on the Bessel Spheroid of Reference and the unit of measu-
rement is the metre. The geographical coordinates of the four pivotal
points A, B, C and D and the four check points, 0, P, Q and R are
given in Table IV,

*+ 1 Cape Rood = 3.778 297 metres (approx.).
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TABLE IV
Point Latitude Longitude
A 47° 30'. 0" North 7°. 0. 0" East
B 47 30 0 9 30 0
C 46 0o 0 9 30 0
D 46 0 0 7 0 0
0 46 45 ] 8 15 0
P 47 30 0 7 15 ]
0 46 10 0 7 20 0
R 46 10 0 9 0 0

After the transformation using the interpolation method, the
errors in the results were found to be :

Point AX AY
0 + 3 mms - 39 mms
P +14 " -15 "
Q -3 " - 28 "
R +12 " - 33 U

As the projection tables for the Lambert Conical Orthomorphic
Projection were originally designed to give an accuracy of + 0.0l metre,
the result obtained by the transformation method appears to be accurate
to about ¥ 4 units,
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Transformation from Mercator's -Projection to the Stereograph

Projection using a spherical earth (Four pivotal points).

EXAMPLE

I

-
Stn Mercator ' s Projection Stereographic Projection {equatorial case) First Orde ¢!  Divided Differences Second Order Divided Differences Third Order Divided Differences
x (metres) y X ( metres) Y [Ze Zear [Ze Zes1 Zeaol x 10% (Ze Zeas Zosn Zeasl x 1015
Al3580619,757 2 779 972,524 3 647 312,248 2 603 518,565 ‘ 0.11780 10355
B|3 409 754.520 2 860 591.727 | 3 578 956.074 2 690 660,911 | Ur o210 24887 4 = O -2,31046 21° - 1,31155 56
0.96647 74284 13 - 0.11568 65389 - 1.68136  +0,89175
c|3 410 399.251 2779 972.524 | 3 491 967,955 2 622 040.295 - 2.28967 65 - 1.30521 18 . .
0.96437 20257 i3 ' - 0,11199 47010 .
D|3 499 754,529 2 699 353,321 3 560 431,486 2 535 293,953
Coordinates of stations Results obtained from the transformation Correcl! results Errors
to be transformed
O3 499 754,529 2779 972,524 3 569 544,085 2 612 893,066 3 569 544,081 2 612 893.065 - 0,004 - 0,001
P (3558 383.806 2 838 351,947 3 632 833.038 2 662 251,361 3 632 833,076 2 662 251,358 - 0.012 - 0,003
Q|3 615 127,888 2 893 951,397 3 694 145,466 2 708 847,978 3694 145,390 y 2708 847,957 - 0.076 - 0,021
Calculation of Coordinates on Stereographic Projection Checks
X ( metres ) Y X (metres ) Y
Station O Z, = 3 647 312,248 2 603 518,565 Station O Zs = 3 560 431,486 2 535 293.953
(z-21) [Zy Zy) = - 77 853,200 +9 526,008 (z-2,) (Zs Zs] = +9 028.924 77 745, 977
(z-2z,) (z-2,) [Z1 Z4y Z3] +85.504 - 150,626 (z-23) (z-2,) (Zy Zs Z4] = +84.554 - 148.320
(z-23) (2-2) (2-25) [Z1 Z9 25 Z4] - 0.467 - 0.881 (2-2) (2-2,) (2-24) [Z) Zy Zg Z4] = - 0.878 +0.466

0

3 562 544,085

2 612 893,066

Station P Z
(z-21) {Z) Z,]

(z-2z,) (z-2;) [Z1 Z3 Z3]

(z-2,) (z~2,) (2-2,) [2) Zy Z3 Z,]

3 647 312,248
- 14 530,561
+51.500

- 0.099

2 603 518.565
+ 58 824.353
- 90,437

- 1,119

P

3 632 833.088

2 662 251.362

Station Q Zy
(2’21) [Zl Z21

(z-2zy) (2-2,) [Zy Z3.Z5]

(z-2,) (z-2,) (z-2;3) [Z1 Z3 Z3 Z4]

3 647 312,248
+ 46 649.618
+ 183,433

+ 0,167

2 603 518.565
+ 105 668,350
- 322,774

- 6,163

Q

3 694 145.466

2 708 847.978

0

3 569 544,086

2 612 893.067

Station P Zy
(z-2,) (Z; Z4)

(z-z4) (z-2() [Zy Z3 Z4}

(2-2,) (2-23) (z-2,) [Z Z3 Z3 Z4]

3 560 431.486
+72 107,597
+ 296,047
-2.042

2 535 293,953
+ 127 480,343
- 521,147

- 1,788

P

3 632 833,088

2 662 251,361

Station Q Zs
(z-z,) (Z3 Z4)

(z-24) (z-2,) (Z3 Zy Zy

(z-2,) (z-2z,) (z-z‘) (Zy Zy Z3 Z4])

3 560 431.486
+ 133 056.897
+ 659,572

- 2,488

2 535 203,953
+ 174 743,911
- 1178.441

- 11,445

Q

3 694 145,467

© 2708 847,978
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Transformation from Mercator's Projection: to the Stereographic

Projection, , using a spherical earth (Five pivotal points).

EXAMPLE II

Sta Mercator ' s Projection Stereographic Projection {equatorial case) First Order Divided Differences| Second Order Divided Differences| Third Order Divided Differences | Fourth Order Divided Differences

x { metres) y X  (metres) Y 1Z Zp 41 1Ze Zea1 Zeszl x 108 UZ Zeay Zyan Zy i3 x 105 | (2 Zyiy Zews Zews Zepg] x 1022

—
A 3 504 035.296 3 040 363.285 3605 191,375 2 864 164,673 0.97538 94544 a1 - 0,12918 03734
B 3 391 781,487 3 193 570,660 3 515 491,656 3 028 102,576 0.98363 53911 ° 0. 12696 45060 -2.333 0326 -1,513 5493 794 302 +0.9 .
. -0, -1, +0,986 136
c . . . -2,271 2959 -1.525 3971 +1, +0,
8 zil 911.4:2 : ;3; 882 :?; :; 331 113,806 z 9?)3 21; :02 0.98394 18594 -0,11859 42633 2.241 6963 - 1.470 2587 -1.799 470 +0.965,998 1.01610 +0,40717

D 3 1911.4 45 844, 308 694,968 807 209,25 0.97626 76003 i -0.11568 55433 . .
E 3 391 781.487 2 887 155.910 3 477 506,847 2 729 105,397 i

Coordinates of stations Results obtained from the transformation Correct resulta Errors

to be transformed
(o} 3 341 651.967 3 040 363.285 3 446 982,477 2 884 436.881 3 446 982.477 . 2884436,891 +0.000 + 0,000
P 3291 711,512 2 887 155,910 3 380 073,386 2 740 664,165 3 380 073.385 A5 2740 664,165 - 0,001 + 0,000
Calculation of Coordinates on Stereographic Projection Checks
X (metres) Y X ( metres) Y
Station O Z; = 3605 191,375 2 864 164,673 Station O Zs = 3 477 506.847 2 729 105,397

(z-2;) (z-

(z~2;) [Zy Zs]
(z=2y) (2-2,) [Z) Z2 Z3)
z,) (z-2zy) [Z) Zy Z3 Z4]

(z-2,) (z2~2,) (z2-24) (2~2,)-1Z; Z3 23 Z4 Z5]

Station P

- 158 386.987
+186.632

- 8.538
- 0,005

+20 976.820
- 703.625

- 1,051
+0,074

0

3 446 982,477

2 884 436,891

Z,
(z-2z,) [Z) Z,]
(z-2;) (z~2;) [Z; Z3 Z5)

(z-2,) (z-2,) (2-23) (2} Z3 Z3 Z4}
(z2-2y) (2~2,) (z~2,) (z2-2,) (Z) Z3 Z3 Z4 Zs]

3 605 191.375
- 226 889,842
+1816.289

- 44,658

+ 0,222

2 864 164.673
- 122 008,686
- 1 486,591

- 5,317

+ 0,086

P

3 380 073.386

2 740 664,165

202

(z~24) [Z4 Zs]
(z‘-zA) (z~2z5) [Z3 Z4 Zs]

(z-2y) (z-2,) (z-24) [Zy Z3 Z4 Zs)
(z-2,) (z-24) (2-2,) (z-25) 1Zy Z3 Z3 2, Z3}

Station P

- 31215.948
+ 692,999

- 1,489

+ 0.068

+ 155 370.657
- 30.839

- 8.351

+ 0,027

0

3 446 982,477

2 884 436.891

Zg
(z~24) [Z4 Zs)
(z=2,) (z-24) (Z3 Z5 Zs]

(z-z,) {z-2,) (z-24) [Zg Z3 Z4 25])
(2-2,) (2-2,) (z-2,) (z-24) (2, Z3 Zg Z4 Zg]

3 477 506.847
- 97 695.074
+265.360

- 3.835
+0.088

2 729 105,397
+ 11 576.649
- 14,245

- 3.613

- 0,023

P

3 380 073,386

2 740 664,165
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EXAMPLE III

Transformation from the Gauss Conform System to the Universal Transverse Mercator System, using Clarke's 1880 Spheroid of Reference

Gauss Conform Systeni Universal Transverse Mercator System First Order Divided Differences Second Order Divided Diffgrences Third Order Divided Differences
L, 2° ; 20 belt Zone 35° ; 6° belt (Ze-Zesy) [Ze Zewy Zeagl x 105 [[Zc Zear Zyag Zeug] x 1012
Stn (Cape Roods) ‘(Metres )
y x E N
Constant +20 000,000 + 750 000,000 + 600 000,000 + 7 100 000,000
Townlands + 4 383,284 + 5 080.095 + 8 443.84 +48122.88
- . 01
Zwartkop +3088.760 +6 313,278 +13261.86  +43 301,43 3.776 5175 +0.057 39 +0.03500 - 0.00030
i . -3.776 5208  + 0,057 4879 . + 0,184 + 0,079
Constantia +4264.902 +7 873,522 + 8 730,44 + 37 566,15 ; + 0.03530 + 0,00001
- +0. 73
Schurveberg +6 369,462  +5 906.865 +895.80 + 45 114.60 3.776 4050 +0.057 4736 .
Coordinates of stations Result obtained from the transformation Result by working Error Error in tables Residual error
to be transformed through geographicals
Mooiplaats Rd.[ +4719.441 + 6 286.865 +7 105,103  + 43 584,833 7105,103 43584.904 | 0.000 +0.071 0.000 +0.072 0.000 - 0.001
€alculation of Coordinates on Universal Transverse Mercator System Check
E (metres) N E ( metres) N
Z) ~ +8 443,84 + 48 122,86 Z, = +895.80 + 45 114.60
(z-2,) [Zy Z3] = - 1 338,759 - 4 538.096 (z-z,) [Zs ‘Z‘] - +6 209,308 -1 529,867
(z-z,) (z-z,) [{Zy Zy Z3) ~ + 0,021 + 0.068 (z-z,) (z_z‘) 12, 23 Z4) = - 0.005 + 0,099
(z-2y) (2-2;) (z-2,) [Z) Zp Z3 Z4] = +0.001 + 0,000 (2-2,) (2-2,) (z~2,) [Z; Z32Z5 Z¢] = + 0,000 + 0.001
Mooiplaats Rd.  +7 105,103 + 43 584,832 Mooiplaats Rd.  +7 105,103 + 43 584,833
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EXAMPLE IV

Transformation from the Lambert Conical Orthomorphic Projection to the Transverse Mercator Projection, using Bessel's Spheroid of Reference

Stn Lambert Conical Transverse Mercator Projection First Or;ier Divided Differences Second Order Third Order
Orthomorphic Projection Divided Differences Divided Differences
x  {mefres) v X  (metres) Y [Z Zesr) [Zr Zea1 Zea2] x 10° 1Z: Zes Zewz Zeag) x 1010
A 705 893,728 779 425,377 481 166,401 5262 329,044
B 894 106,272 1779 425.377 660 408,691 5 264 753,085 100083 62275  0.01287 92744 | | . 0 .00 | 562 940
1.00114 83683 ©0,01295 77185 4,171 037 0,108 688

C 896 716,076 612 860.253 674 269,796 5 098 030,500 1.326 820 0.867 207
D 703 283.924 612 860,253 480 636.524 5 095 598,845 1.00103 97444~ 0.01257 11004

Coordinates of stations Results obtained from the transformation Correct results Errors

to be transformed

o} 800 000.000 695 381,791 576 400,524 5 179 413,815 576 400.527 5 179 413,776 +0.003 - 0,039
P 724 713.873 779 159,988 499 999.986 5 262 298,765 500 000,000 5 262 298,750 +0,014 - 0,015
Q 729 286.138 631 013,708 506 435.088 5 114 095,287 506 435,085 5 114 095,259 - 0.003 - 0.028
R 857 857.217 630 879,419 635 135,958 5 115 580.840 635 135,970 5 115 580,808 +0,012 - 0,032
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F. YOUNG

Professor University of the Witwatersrand,
Johannesburg ( Afrique du Sud)

NOTE ON THE REMAINDER TERM

1. Suppose we map points ( q,A) on the earth's surface on to two
planes (which we may call a z-plane, where z = x+iy, and a Z-plane,
where Z = X +iY ) using two different transformations

z = af{q+id)

Z -~ B(g+id)
If it is possible to eliminate q and M between these two equations,
then we can find a relation Z = f (z) which can be used to map points
from the z-plane on to the Z-plane. In general, however, it is very
difficult to find the explicit function f(z) , or it may be inconvenient
to calculate f(z) for a large number of values of z, so that surveyors
in order to find the Z . corresponding to a given z would first have to
find the point (q, M) (using the first of the above transformations) and
then calculate Z (using the second). This often involves a great deal
of heavy and complicated arithmetic.

Professor Lauf has discovered that excellent resulis involving
a great saving of work can be obtained by using the Newton Divided
Difference Formula.

2. Newton's Divided Difference Formula (involving complex values
of the variable)

Let f(t) be a regular function of t on and within a simple
closed contour C, enclosing the points z,, z;,-:* 2, 2.

Then f(z) = f(z,) + (2-2,) [Z; Z3) + (2-2,) (2~2,) [Z) Zy Z3]
+ errened (2=29) cer(zm2z4y) (Z) Zg oo e Zy) + Ra(Z),

N 1 / £(t) de
where (Zy Zg-++7Z] T / T2y (tezg) e (mz)

l‘z f(zs)
s=1 (zg-21) ++ (25 ~2g=~1) (2g~Za4y) cro(2g-2,)

_ N £(r) dt
and Ry (Z) = 2i T /(;_z!)...(t-zn) (t-z)’

[+

N being the product (z-z,)..ilz-z,)
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NOTE ON THE REMAINDER TERM

Proof
Since (i) 11, z-z L1
tez  tez; t-z] t-z
and (ij) 2%w 1 1 1
t=Zeyy b=z -z t-2eyy
it follows (by induction) that
1 1 z-Z) 1 (z-2,) (z-z,) 1
— B t—_— .. 4 ecene
t-z  t-2zy  t-z; t-z, (t-z) (t-~z,) (t-z,)
(z-2y) (z-2;) 0o {2-20.,) 1 (z-2y) (z-2,) o0 (z2m2y) 1

(t-z,) (t-z3)+er (t=2pey) (t=z4) * (t-z) (t-2,) .. (t-z,) (t—z)'

. 1
We next multiply throughout by-éi—n- f(t) and integrate both sides

of the identity about the contour C . The formula follows by Cauchy's
Integral Theorem (1),

3. If now |Ry(Z)| is very small for any particular Z and a particular
value of n , we can neglect this Remainder Term and assume that

n
f(z) = f(z,) + m§2 (zezy) evr(z-2py) [Z)Zg-ve Zp] (4)

Professor Lauf has found that starting with four fixed points z,, z, ,
z; and z, evenly distributed on a circle of radius 50 miles, then
IR4(Z)}] is generally negligible provided z is a point within 100 miles
from the centre,

The calculation involves the determination of the divided diffe-
rences [Zy Z51,[Zy Zy Z3) and [Z) Zy Z3 Z4] (which are independent of Z).
And the terms of the above expansion (A) can then easily be compu-
ted on a small calculating machine.

4, It is, of course, not easy to justify the method in all cases. We
shall do so in the case where the points z are mapped by Mercator's
Projection z = R(q+i\) and the points Z by the Stereographic Projec-
tion (equatorial case), 1 '

Z = 2R taub'—z—(q+ i\)

1t then follows that
Z = 2R tanb 2—ZR-

that is, A N
smb—ﬁ- + 1 sm—ﬁ
(X +iY) = 2R (B)

cosh — + cos —
R

R

In this case Z can be computed directly, when z is know, al-
though the hyperbolic and circular functions would have to be found
to a large number of decimal places in view of the large value of

the factor 2R.

(1) Whittakee and Watson' : ' Modern-Analysis .
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F. YOUNG

Our object is not, however, to point out the advantages of
using the Difference Formula (A) in this particular instance but
rather to demonstrate that the formula is as reliable as (B),

This gives rise to the hope that (A) produces reliable results
in other cases where (B) is either not known or difficult to handle,

5, We need two preliminary lemmas

(i) Let m points z,, z; ...zm be uniformly distributed about acircle
of centre O and radius ¢ and let z be a point on a concentric circle

of radius r.

does not exceed @ + c®
M

1——T

m

Then ‘ .(Z‘ZI) (z-z;) '-lco(Z-Zm) l

We can take the point z: to be ce

. 2T

l(z-cel—‘;- )-----(z-ce“")l -] 2% -c® |

g lzi®+c™

= P 4 c®

™
(ii) 1f g <ac T then the maximum value of

| tanb (-;—eia)l is tan-;—
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NOTE ON THE REMAINDER TERM
8 ify2
Let g-[tanb(*z—e )]
= tank (-;eio) tank (-;—-e"ie)
dg 1. _is _jo igy, 12 40 "
'thend—a-o‘[-2 e sinb (ae )+2 eV sinb (ae™ )]

where @ =2 cosh? (-%-neie) cosb? (—;—ae‘ia)

dg n a
—_ - hi « — and - 2 -
8 o, when ¢ 3 nd g tan 2

2 - si 3
dé_gz_a(acosa sin a) <o for— < a < *®
de 4 8 2

2 cos

. T
Hence a maximum at ¢ -»?

When g is a maximum, so also is +g

6. Suppose now that § is a region covered by a circle of radius 100
miles, We can choose suitable x and y axes through the centre of the
circle and select four points K, L, M and N on the axes each at a
distance of, say, 50 miles from the centre.

The transformation Z = 2R tanb -;—R maps the region § (in the z-

plane) on to another region T (in the Z-plane),

By starting with the four points as base and using the formula
(A) with n = 4 we find that the error in computing f (z) does not exceed

. / 2R tanh o= dt
(D =1Go2) lam2) Gam2) o2 i S ooy (tz) Goa) |
C

T
where : C is the circle |[t| =aR ,-—< a < ® andz,,2,, 2z, andz,
are the points , K,L,M and N. 2

Applying Cauch'ys Inequality Theorem ? I, F(z)dz] < ML

where | F (2) | < M on the path C and L is the length of the path, and
taking a =248 and R = 3959 miles the error involved does not exceed
1.44 feet (= 437mms),when z lies within the circle lz] € 100 miles.

NB. |(z-2)) (z-2,) (z-25) (z-2,) | < |z|* + c*

< {1004 + 50%) miles?
< —1];2—108 milest

(2) Whittaker end Watson' : Modera Analysis .
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NOTE ON THE REMAINDER TERM
2 gy 2
Let g-ltanb(ze )]
- tanb (.;e“’) tank (-';-e-iﬂ)
then ds l[-.— e ginp (aei9)+2e“’ sink (ae 18}
de «a 2 2

1 . .
where @ =2 cosh? (-E- aei®) cosp? (—;-ae“e)

d n
-d—g.o, whene--z— and g-tanz-%-
d?g a{acosa - sina) . A .
- <o for—<a < ™x
de 4 8 2

2 cost —

. T
Hence a maximum at @ -»?

When g is a maximum, so also is /g

6, Suppose now that S is a region covered by a circle of radius 100
miles, We can choose suitable x and y axes through the centre of the
circle and select four points K, L, M and N on the axes each at a
distance of, say, 50 miles from the centre.

The transformation Z = 2R tanb -2—% maps the region S (in the z-
plane) on to another region T (in the Z-plane).

By starting with the four points as base and using the formula
(A) with n = 4 we find that the error in computing f (z) does not exceed

. / 2R tanh o= dt
IR (2)] =1 G20) (-2,) (2-20) G2 U oy S 0y (o) (e (o) |

c

T
where : C is the circle [f{| = aR , —§-< a<m™andz,,z;, 2z, andz,
are the points , K,L,M and N.

Applying Cauch'ys Inequality Theorem ¥ If, F(z)dz]| < ML

where | F (z) ] <M on the path C and L is the length of the path, and
taking a=2.48 and R = 3959 miles the error involved does not exceed
1,44 feet (= 437mms),when z lies within the circle |z]| < 100 miles,

N.B. |(z-z))(z-2;) (z-2,) (z-2,) | < |z |* +¢*
< (100% + 50%) miles?

< %—2— 108 milest

(2) Whittaker and Watson' : Modern- Analysis .
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